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1 Introduction

Innovations and disruptions to global supply chains lead to gradual adjustments in international trade
flows. It has long been recognized that the trade elasticity, a key parameter that captures the substitution
between imported goods from different countries in response to trade costs, varies by time horizon
(e.g. Dekle, Eaton and Kortum, 2008). Boehm, Levchenko and Pandalai-Nayar (2023) use plausibly
exogenous tariff changes to measure the trade elasticity by time horizon and find that the short-run
trade elasticity is about half the size of the long-run elasticity. This differential implies substantial
frictions in trade adjustment that a static trade model cannot account for. A dynamic framework is
needed to provide a rigorous and plausible quantification of the transitory impact of shocks to global
supply chains.

This paper proposes a dynamic general-equilibrium model of trade with many countries and many
industries, where staggered sourcing decisions give rise to horizon-specific trade elasticities. Under
the Ricardian trade tenet, products are sourced from the least expensive global supplier. However,
the opportunity to switch to a new supplier only arrives randomly following a Poisson process. As a
consequence, only some buyers respond to a trade disruption by adjusting to optimal sourcing relations.
Other buyers endure a suboptimal sourcing choice until they can adjust. In this framework, disruptions
put the world economy through a sustained period of adjustment.

The model preserves the analytical tractability of a class of quantitative Ricardian models based on
Eaton and Kortum (2002, henceforth EK). We characterize impulse responses in the model using the
dynamic hat algebra method. We establish a closed-form expression for the horizon-specific trade
elasticity, showing that our model rationalizes the estimates in Boehm, Levchenko and Pandalai-Nayar
(2023) as a convex combination of fundamental elasticity parameters with related implications for
horizon-specific gains from trade.

Specifically, we assume that intermediate goods are produced using constant returns-to-scale technolo-
gies and producers differ by productivity drawn from a country-sector specific Fréchet distribution.
Trade is subject to iceberg trade costs. An assembler of the final good at a destination d seeks to buy
from the least expensive global supplier, but may not be able to constantly switch from one supplier
to another. The assembler’s sourcing decision is governed by a binary random process: an assembler
either chooses the least expensive global supplier of an intermediate good from any source-industry, or
the assembler continues purchasing from the same producer as in the preceding period. We can there-
fore characterize equilibrium as a set of measurable partitions of the space of intermediate goods for
each supplier, and then derive the equilibrium distributions. An intermediate good’s price at a moment
in time equals the initial destination price adjusted for the cumulative changes in iceberg trade costs
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since the supplier was last elected. We show that a destination country’s expenditure shares by source
country across intermediate goods take an analytic form as in EK and similar Ricardian frameworks
that are consistent with the gravity equation of trade.

The expenditure shares in the augmented gravity equation encode the price that a buyer paid at the time
of the last supplier change. Through this unmoved component while a buyer-supplier relationship lasts,
cross price effects of substitution are governed by the short-run trade elasticity, similar to an Arming-
ton (1969) model. When all supplier-buyer relationships are reset optimally, the gravity expression
simplifies to the common gravity equation in an EK framework, so that the long-run trade elasticity
prevails. With the equilibrium relationships at hand, we compute impulse responses recursively, and
we analytically derive the trade elasticity εhi for each time horizon h after a shock to the global supply
network:

εhi ≡ ∂ log λsdi,h

∂ log τsdi,0
= −θi

[
1− (1− ζi)

h+1
]
− (σi − 1)(1− ζi)

h+1,

where λsdi,h is destination country d’s expenditure share falling on intermediate goods from source
country s in industry i in the hth period after the shock, τsdi,0 is the trade cost component that is shocked
at time 0, θi is the long-term trade elasticity as in EK, σi − 1 is the short-term trade elasticity as in
Armington, and ζi ∈ (0, 1) is a parameter that describes the frequency at which buyers of intermediate
goods from industry i can switch suppliers. The prevailing trade elasticity εhi increases over time in
absolute value from the short-run to the long-run level (for the common parametrization θi > σi − 1).

In the long-run, the trade elasticity converges to the familiar Fréchet parameter θi as in EK. The rate
of convergence depends on the frequency at which buyers can establish a new sourcing relationship
ζi. The key parameters of our model are therefore identifiable from reduced-form estimates of the
trade elasticity at varying time horizons as in Boehm, Levchenko and Pandalai-Nayar (2023). This
characterization of the horizon-specific trade elasticity also implies a horizon-specific welfare formula
that nests the well-known formula from Arkolakis, Costinot and Rodrı́guez-Clare (2012) as a special
case.

We show how the above results can be used to derive a set of estimation equations for the relevant
parameters governing short and long-run trade elasticities, document how existing results from Boehm,
Levchenko and Pandalai-Nayar (2023) can be employed, and quantify our trade model for 12 aggregate
industries and 20 countries. We apply the model to the episode of the US-China trade war in 2018 and
show that rich sectoral dynamics can result, with consequential changes in welfare implications. For
instance, accounting for the dynamic costs of supply disruptions raises the welfare costs of the trade war
in the U.S. by about 70%, compared to a long-run model. Further, gains from trade can qualitatively
differ between the short-run and long-run. In the short-run, the price disruptions caused by the US-
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China trade war propagate through the network of existing supply relationships, leading to a global
reduction in economic welfare. Those short-run losses, in part, reflect the limited scope for third-party
countries to gain from the trade dispute by forming new supply relationships with the US or China;
however, such gains may materialize in the long-run. As a consequence, countries whose previous
trade linkages leave them most exposed to the US-China trade war, such as Mexico, experience large
initial welfare losses in the short-run, but sizeable increases in welfare in the long-run.

The wide discrepancy between a low (short-run) trade elasticity in international macroeconomics and
a high (long-run) trade elasticity in international trade has been documented in, for example, Ruhl
(2008, who calls the discrepancy an “international elasticity puzzle”) and Fontagné, Martin and Orefice
(2018). Fontagné, Guimbard and Orefice (2022), Boehm, Levchenko and Pandalai-Nayar (2023) and
Anderson and Yotov (2022) offer estimation procedures to separately identify short- and long-run trade
elasticities. Anderson and Yotov (2022) rationalize their estimation procedure with firm heterogeneity
in lag times from recognition to action in the spirit of Lucas and Prescott (1971). In an alternative
approach from a macroeconomic perspective, Yilmazkuday (2019) proposes a framework with nested
CES models and derives the trade elasticity as the weighted average of macro elasticities. Our general
equilibrium model offers a rationalization for the existing estimation methods with a mixture of the
Armington and EK elasticities.

The importance of staggered contracts for trade and exchange rate dynamics has been recognized since
at least Kollintzas and Zhou (1992) and shares features with staggered pricing (Calvo, 1983). We
generalize deterministic contract ages to supplier relationships that end stochastically and to be reset
optimally. In a related approach, Arkolakis, Eaton and Kortum (2011) embed a consumer with no
knowledge of the identity of source countries into an EK model. The consumer can switch to the
lowest-cost supplier at random intervals but cannot act strategically because the supplier is unknown.
We rationalize consumer behavior by introducing an assembler that operates similar to a wholesale or
retail firm in that it sources bundles of goods at lowest cost while the consumer cannot unbundle the
assembled final good. An assembler, in turn, cannot incur losses in imperfect capital markets and thus
sources from the current lowest-cost supplier. Our model allows us to derive a stationary equilibrium
distribution of supplier prices by age of contract beyond a binary characterization in Arkolakis, Eaton
and Kortum (2011).1 Based on the mixture of the stationary equilibrium distributions of prices by
contract age, we can fully characterize steady states as well as transitionary dynamics. As a result, we
obtain the original EK model as the limit of the equilibria along the transition path. Our welfare formula
therefore endogenously inherits the long-run elasticity as a special case when all supplier contracts are
optimally set.

1The underlying stochastic process shares features with the so-called Sisyphos Process (Montero and Villarroel, 2016).
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The remainder of the paper is organized as follows. We present the model in Section 2, with details
on mathematical derivations relegated to the Appendix. In Section 3 we turn to the dynamic analysis
of the model. Estimation of the key parameters follows in Section 4. To illuminate the novel dynamic
features of the model for the allocation of economic activities during the adjustment path and the
welfare consequences, we present a case study of the US-China trade war in Section 5. Section 6 offers
concluding remarks.

2 Model

2.1 Fundamentals

Consider a world economy with N destination countries d ∈ D := {1, 2, · · · , N}, s ∈ D source
countries of trade flows, and I industries i, j ∈ I := {0, 1, 2, · · · , I}. Time t is discrete. Subscripts
sdi, t denote a trade flow from source region s to destination d in industry i at time t. Households
inelastically supply a single production factor (labor) to domestic firms, and markets are perfectly
competitive.

Households. In each period t, a mass of Ld infinitely-lived households in country d inelastically
supplies one unit of the production factor to domestic firms at a competitive wage wd,t. Household
utility in country d at time t is given by u(Cd,t), where Cd,t is the final good: a Cobb-Douglas aggregate
over the composite goods Cdi,t from each industry with

Cd,t =
∏
i∈I

(
Cdi,t

)ηdi . (1)

The coefficient ηdi is the consumption expenditure share of industry i′s composite good, with
∑

i∈I ηdi =

1. Let Pdi,t denote the price index of the industry i good in d at time t. Country d′s consumer price
index is then given by Pd,t =

∏
i∈I
(
Pdi,t/ηd,i

)ηdi . We assume that households consume their income
in every period and discount future utility flows at rate β ∈ (0, 1).

Intermediate Goods. Every industry i consists of a continuum of producers of intermediate goods
ω ∈ [0, 1]. For each intermediate good, there is a large set of potential producers in each country with
different technologies to produce the good. In each industry, producers of an intermediate good ω have
an individual productivity z and operate a constant-returns-to-scale technology to produce the good
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using domestic labor ℓ and composite goods Mji sourced from other industries:

yi(ω) = z (ℓ)αdi

∏
j∈I

(Mji)
αdji . (2)

where yi(ω) is the output of good ω. The coefficient αdi is the value-added share of industry i and the
parameters αdij ≥ 0 are such that αdi =

∑
j∈J αdji.

We assume that intermediate goods can be traded across countries subject to an iceberg transportation
cost, which implies that shipping one unit of a good in industry i from country s to country d at time t

requires producing dsdi,t ≥ 1 units in s, where dddi,t = 1 for all d. Moreover, goods imported by d from
s at t may be subject to an ad-valorem tariff τ̄sdi,t. We combine both trade costs into one parameter
τsdi,t ≡ dsdi,tτ̄sdi,t.

Given this formulation of trade costs and technologies, there is a common unit cost component at
destination d for all intermediate goods produced in country s, which we denote with

csdi,t ≡ Θsjτsdi,t (ws,t)
αsi

∏
j∈J

(Psj,t)
αsji , (3)

where Θsj is a collection of Cobb-Douglas coefficients. The resulting unit cost of good ω at destination
d produced in country s with a productivity z(ω) is given by csdi,t/z(ω).

Production technologies for intermediate goods arrive stochastically and independently at a rate that
varies by country and industry. In particular, we follow Eaton and Kortum (2012) in assuming that the
mass of intermediate goods ω in country s’s industry i that can be produced with a productivity higher
than z to be distributed Poisson with mean Asiz

−θi .

Assembly of Composite Goods. In each industry, assemblers bundle intermediate goods into a com-
posite good for consumption or production. An assembler procures intermediate goods at the lowest
possible price and costlessly aggregates the sourced intermediates into Ydi,t units of industry i’s com-
posite good using the technology

Ydi,t =

(∫
[0,1]

ydi,t(ω)
(σi−1)/σidω

) σi
σi−1

, (4)

where ydi,t(ω) is the quantity purchased of an intermediate good ω by an assembler in country d, and
σi is the elasticity of substitution between intermediate goods in industry i. We let pdi,t(ω) denote
the lowest possible price at which an intermediate good ω can be purchased at destination d. We will
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explain the exact price at which this intermediate good is available in greater detail below. As we
elaborate in Appendix B.1, cost minimization given (4) implies that the price of industry i’s composite
good at destination d satisfies

Pdi,t =

(∫
[0,1]

pdi,t(dω)
−(σi−1)dω

)− 1
σi−1

. (5)

2.2 Sourcing Decisions and Trade Flows

Under the Ricardian trade tenet, assemblers seek to source an intermediate good from the least ex-
pensive global supplier. However, an assembler may not have the opportunity to adjust its choice of
suppliers at any given time due to a sourcing friction, which we describe now. For every intermediate
good ω, there is a continuum of producers in every country. Under perfect competition, an assembler
optimally sources any given intermediate good ω from only one source country when given the choice.

The assemblers’ choice of source country for any given intermediate good ω is governed by an i.i.d.
random variable xi,t(ω) ∈ {0, 1} for each industry. If xi,t(ω) = 1, that is if the global draw for an
intermediate good ω from industry i gives all assemblers worldwide the green light to switch to their
preferred source country, then all assemblers optimally choose to purchase from the least costly source
country for variety ω in industry i at time t. Between assemblers in different countries the optimal
source country can vary because of different trade costs. Else, if xi,t(ω) = 0, that is if the global draw
for intermediate ω turns to red for all assemblers worldwide, then all assemblers must purchase their
intermediate goods ω in industry i from the same producer as in the preceding period t− 1. While the
identity of the source country does not change, the quantity procured and the price that the assembler
pays can differ from the preceding period if the factory gate price moves (because of changing factor
costs) or the currently prevailing trade cost moves.

This formulation of sourcing frictions captures search costs and other types of impediments that prevent
the optimal rematch of supply relationships at a moment in time. An implication of the sourcing
friction is that price elasticities of demand will differ across intermediate goods according to when
their suppliers were last chosen. Let Ωk

j,t denote the set of industry j goods whose supplier at time t

was last chosen k periods ago:

Ωk
i,t =

{
ω : xdi,t−k(ω) = 1,

∏t
ς=t−k+1 xdi,ς(ω) = 0

}
, (6)

where ∪kΩ
k
j,t = [0, 1]. The sets Ωk

i,t mutually exclusively and exhaustively partition the unit interval of
intermediate goods for each industry i.
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2.2.1 Demand for Intermediate Goods with Newly Formed Supply Relationships

We now describe the global demand for intermediate goods in each of these sets, beginning with those
that are concurrently formed, ω ∈ Ω0

dj,t.

If country s is chosen by an assembler in destination d to supply industry i’s intermediate good ω at
time t, the combination of the producer’s productivity ω, factor cost in source country s and the trade
cost between s and d in industry i must make the intermediate good the least expensive.

Let zsi(ω) denote the highest realized productivity by any producer in country-industry si. Similar to
Eaton and Kortum (2002), our distributional assumptions imply that zsi has a country-industry specific
Fréchet distribution given by2

Pr
[
zsi(ω) ≤ z|Asi, θi

]
= exp

{
−Asiz

−θi
}
. (7)

For an assembler in destination d the price of an intermediate good ω from the cheapest available source
country at time t is

pdi,t(ω) = min
s∈D

{
csdi,t
zsi(ω)

}
(8)

for the common unit cost component csdi,t given by (3) and the producer with the highest realized
productivity zsi(ω) in country-industry si.

As in Eaton and Kortum (2002), the distribution of paid prices across intermediate goods in the set Ω0
i,t

in destination d at time t satisfies

G0
di,t

[
pdi,t(ω) ≤ p

]
≡ Pr

[
pdi,t(ω) ≤ p

∣∣xi,t(ω) = 1
]
= 1− exp

{
−Φ0

di,tp
−θi
}
, (9)

where
Φ0

di,t ≡
∑
n∈N

Ani[cndi,t]
−θi (10)

is a measure of destination d′s market access for intermediate goods ω ∈ Ω0
i,t, given trade cost and

factor prices behind the common unit cost component cndi,t by (3). We relegate the derivation of these
results to Appendix B.2. To guarantee that the distribution of paid prices has a finite mean later, we
impose the standard parametric restriction that θi > σi − 1 for all i ∈ I.

The properties of the Fréchet distribution imply that G0
di,t also equals the distribution of prices for

2Our model could also accommodate productivity change over time with a country-industry-time specific Fréchet distri-
bution and resulting zsi,t(ω) realizations that vary over time. To focus most sharply on adjustment to trade shocks, we do
not specify productivity shocks.
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intermediate goods ω ∈ Ω0
i,t sourced from any source country s. As a result, country d’s expenditure

share for each potential source country s across intermediate goods ω ∈ Ω0
i,t must equal the probability

that this source country offers the lowest global price:

λ0
sdi,t =

Asj[csdi,t]
−θi

Φ0
di,t

. (11)

with the common unit cost component csdi,t given by (3).

Within the set of intermediate goods that are sourced through concurrently and optimally formed supply
relationships, the partial equilibrium elasticity of trade flows with respect to trade cost is governed by
the familiar Fréchet parameter:

∂ log λ0
sdi,t

∂ log τsdi,t

∣∣∣∣∣
Φ0

di,t

= −θj.

2.2.2 Demand for Intermediate Goods with Continuing Supply Relationships

Intermediate goods ω ∈ Ωk
j,t are purchased from a supplier that was chosen at time t−k. To characterize

prices and expenditure allocations across these intermediate goods at time t, we denote changes over
time for a variable xt succinctly by x̂t ≡ xt/xt−1.

Suppose an assembler in d first sourced an intermediate good ω from s at time t − k under the unit
input cost csdi,t−k/zsi(ω), which depends on equilibrium factor prices and parameters by the common
unit cost component (3). If the intermediate good is still sourced from the same producer at time t, its
price will then equal:3

psdj,t(ω) =
csdi,t
zsi(ω)

=
csdi,t−k

∏t
ς=t−k+1 ĉsid,ς

zsi(ω)
, (12)

which is the initial destination price adjusted for the cumulative changes in iceberg trade costs and
factor cost since t− k.

We show in Appendix B.3 that country d’s expenditure share by source country across intermediate
goods ω ∈ Ωk

i,t equals

λk
sdi,t =

λ0
sdi,t−k

(∏t
ς=t−k+1 ĉsid,ς

)1−σi

Φk
di,t

, (13)

3Note that xt = xt−k
xt−k+1

xt−k
· · · xt

xt−1
≡ xt−kx̂t−k+1 · · · x̂t. For a composite variable such as csdi,t = τsdi,t ws,t, the

change over time is ĉsdi,t = τ̂sdi,t ŵs,t.
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where

Φk
di,t ≡

∑
n∈N

λ0
ndi,t−k

 t∏
ς=t−k+1

ĉnid,ς

1−σi

(14)

reflects the mean price that a buyer pays for the set of intermediate goods Ωk
i,t at time t− k through the

trade shares
{
λ0
nid,t−k

}
n∈N

.

Comparing Equations (11) and (13) shows how cross-price effects differ across intermediate goods
depending on when a supply relationship is formed. If assemblers can source from the least expensive
global supplier of an intermediate good at time t, cross-price demand effects are governed the Fréchet
parameter θi, and trade is governed by comparative advantage.

Conversely, if an assembler is unable to switch suppliers, then the extensive margin is shut down.
The only margin of adjustment is the intensive margin, which is captured by the terms that collect the
product of changes in unit input costs. Effectively, over those partitions, trade happens as if varieties
were differentiated across countries with the measure of varieties of each source defined at the last
period of adjustment —i.e. at period t− k for partition Ωk

i,t.

In order words, for each partition Ωk
i,t, trade happens under Armington forces. Intuitively, the price

elasticity of demand is governed by the elasticity of substitution σi − 1, which captures Armington
trade:

∂ log λk
sdi,t

∂ log τsdi,ς

∣∣∣∣∣
Φk

di,t

= − (σi − 1) for t− k < ς < t.

To close the model, we now show how aggregate global demand for industry i’s composite good follows
from aggregating the trade shares in Equations (11) and (13).

2.3 Aggregation

To find aggregate demand, we leverage the homotheticity of assembly. The partial price index for the
composite of intermediate goods purchased at time t from suppliers chosen t− k periods ago satisfies
(P k

di,t)
1−σj =

∫
ω∈Ωk

i,t
p(ω)

1−σj

di,t dω. The sets
{
Ωk

i,t

}∞

k=0
form a partition of industry i’s product space, so

we can obtain country d’s price index for industry i goods at time t by aggregating these partial price

indices over all partitions and find P
1−σj

di,t =
∑∞

k=0

(
P k
di,t

)1−σj

.

We establish in Appendix B.2 that the partial price index for the set of intermediate goods whose
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suppliers are being chosen at time t takes the familiar form

P 0
di,t = γi µi,t(0)

1/(1−σj)
(
Φ0

di,t

)− 1
θi , (15)

where γi ≡ Γ
(
[θi − σi + 1]/θj

)1−σj is a constant, Φ0
di,t is given by (10), and µi,t(0) denotes the measure

of the set Ω0
i,t. Following the previous discussion, the endogenous market access term Φ0

di,t represents
the mean price of intermediate goods whose suppliers are chosen at time t. The measure µi,t(0) ac-
counts for gains from variety. This measure recursively evolves over time according to the stochastic
process that governs sourcing decisions, given by

µi,t(k) =

ζi, k = 0

(1− ζi)µi,t−1(k − 1), k > 0.
(16)

As we show in Appendix B.3, the partial price index across intermediate goods whose suppliers were
last chosen at time t− k is given by

P k
di,t = P 0

di,t−k

(
µi,t(k)

µi,t−k(0)
Φk

di,t

)1/(1−σi)

, k > 1 (17)

which is the period t− k price index of the basket of intermediate goods Ω0
t−k, adjusted for the subse-

quent change in variety composition, captured by µi,t(k)/µi,t−k(0), and prices, captured by Φk
di,t.

Given Equations (15) and (17), we can solve for the composite price index of industry i goods in
country d at time t:

Pdi,t = γi

(
Φ0

di,t

)− 1
θi

µi,t(0) +
∞∑
k=1

µi,t(k)

(
Φ0

di,t

Φ0
di,t−k

) 1−σi
θi

Φk
di,t


1

1−σj

(18)

The term γi

(
Φ0

di,t

)−1/θi
on the right-hand-side of Equation (18) captures the prices paid under flexible

supplier choice. The term in brackets quantifies the extend to which current aggregate demand is
affected by the stickiness of supply relationships. The terms Φk

di,t capture differences in demand across
intermediate goods driven by differences in the age of their supply relationships and reflect their impact
on aggregate demand at time t. The term (Φ0

di,t/Φ
0
di,t−k)

(1−σi)/θi measures the current demand of a
buyer whose supplier relationship from k periods ago differs from that of a buyer who just updated its
supplier.
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Using the above price indices, we can readily derive country d’s expenditure share on industry i goods
sourced from country s

λsdi,t =
∞∑
k=0

λk
sdi,t

(
P k
di,t

Pdi,t

)1−σi

. (19)

where λk
sdi,t is given by Equation (11) if k = 0 and (13) if k > 0.

The set of trade shares {λsdi,t}s,d∈N ,i∈I fully characterize demand in the world economy at time t. To
close the model, we now describe the conditions for market clearing and define a general equilibrium.

2.4 Equilibrium

Denote the total revenue of an industry i in a source country s at time t by Xsi,t. To define equilib-
rium, we express each industry’s revenue in terms of trade shares, given by Equation (19), and total
expenditures on consumption, Ed,t, and intermediate inputs in the rest of the world:

Xsi,t =
∑
d∈N

λsdi,t

ηdiEd,t +
∑
j∈I

αsijXdj,t

 . (20)

A country’s national consumption spending is the sum of its factor income and trade deficit, Ed,t =

wd,tLd,t + Dd,t, with
∑

d∈N Dd,t = 0. We follow the conventional approach in the international trade
literature and treat aggregate trade deficits as exogenous. To clear the factor market, wages then adjust
to ensure that expenditures equal disposable income,

wd,tLd,t =
∑
i∈I

(1− αdi)Xdi,t, (21)

and goods market clearing is guaranteed by Walras’ law.

We are now ready to define a dynamic general equilibrium and a steady state.

Definition 1. An economy is described by a set of time-invariant parameters summarizing technolo-

gies, preferences and factor endowments, Θ =
{
θi, σi, {αdji}j∈I , φdi, Adi, ηdi, Ld}d∈N

}
i∈I , sourcing

frictions ζ = {ζi}i∈I , as well as a measure µt0 = {µt0(k)}k∈{0,1,··· } for some t0. Given histories of

trade costs τ t−1 ≡ {τt}ς<t =
{
τsid,ς

}
s,d∈N ,i∈I,ς<t

and their changes τ̂t ≡ {τ̂sdi,t}s,d∈N ,i∈I as well as

nominal wages wt−1 = {wς}ς<t = {wd,ς}d∈N ,ς<t:

1. A static equilibrium at time t is a vector of wages w(τ̂t × τt−1 ∪ τ t−1,wt−1, ζ,Θ) = wt that

jointly solves Equations (19) to (21) for all s, d ∈ N and i ∈ I.
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2. A dynamic equilibrium at time t is a history of wages wt so that, for all wς ∈ wt, wς = w(τ̂ς−1×
τς−1 ∪ τ ς−1, wς−1 ∪wς−2, ζ,Θ).

3. A dynamic equilibrium at time t is a steady state if w(1N×N×I×τt∪τ t−1, wt∪wt−1, ζ,Θ) = wt.

2.5 Steady-State Properties

In the following, we show that our model preserves the class of quantitative trade models based on Eaton
and Kortum (2002) in the limit when the economy is in steady state, irrespective of the magnitude of
the frictions underlying imperfect supplier adjustment, ζi ∈ (0, 1). Intuitively, the transitory effects of
trade disruptions that arise in our model reflect how opportunities for finding new suppliers are limited
in the short-run but increasing over time. As assemblers get to adjust all supply relationships in the
long-run, we then obtain the EK-model as the limit of the equilibria along the transition path.

More formally, let wEK(τ̂t×τt−1∪τ t−1,wt−1, 1,Θ) represent the equilibrium allocation in an economy
in which suppliers can be flexibly adjusted for all goods, ζi = 1 for all i. We can then establish

Proposition 1. If wt∗ is a steady state equilibrium, then

1. For any ζ , wt∗ = w(1N×N×I×τt∗∪τ t∗−1, wt∗∪wt∗−1, ζ,Θ) = wEK(1N×N×I×τt∗∪τ t∗−1, wt∗∪
wt∗−1, 1,Θ).

2. For all k ∈ {0, 1, ...}, the measure of goods ω ∈ Ωk
i,t equals µi,t∗(k) = (1 − ζi)

kζi, and trade

flows are given by λk
sdi,t∗ = λsdi,t = λEK

sid where λEK
sid denotes the trade shares in the frictionless

economy.

Proposition 1 provides numerous useful insights. The first part makes clear that the tools developed by
the literature studying the equilibrium properties of static quantitative trade models can be deployed to
establish the existence and uniqueness of steady states in our model.

The second part of Proposition 1 highlights properties of the steady states that we later leverage to
quantify the model. In particular, it shows that the process governing the evolution of the age distribu-
tion of supply relationships over time has a simple geometric stationary distribution. Further, it shows
that steady state expenditure allocations are equalized across goods within an industry, irrespective of
when their supplier was chosen.
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3 Dynamic Adjustment to Trade Shocks

In this section, we theoretically characterize the economy’s dynamic response to trade disruptions.
In particular, we derive a new structural estimating equation for the trade elasticity at different time
horizons, and show that transitional dynamics can be characterized using the dynamic hat-algebra.
Finally, we provide a new formula for characterizing the horizon-specific gains from trade.

3.1 Trade Elasticity by Time Horizon

We begin by showing how the trade elasticity, that is the elasticity of trade flows with respect to transport
cost, varies over time. To do so, we let εhsdi,t denote the trade elasticity at horizon h, which we define
by:

εhsdi,t−1 ≡
∂ logXsdi,t+h

∂ log τsdi,t

∣∣∣∣∣
{Φk

di,t+ς}t≤ς≤h,k

, (22)

which is the elasticity of trade flows in industry i from country s to d at time t + h , Xsdi,t+h/Xsdi,t−1

with respect to change in trade costs at t, d log τsdi,t = log τ̂sdi,t, holding fixed the general equilibrium
terms that summarize changes in market access for industry i goods in destination d. The following
derives a closed-form expression for this elasticity.

Proposition 2. Suppose that the economy is in steady state at t = −1. Then, up to a first order, the

horizon-h response of trade flows to a shock to trade cost at time t = 0 is given by:

εhi = −θi

[
1− (1− ζi)

h+1
]
− (σi − 1)(1− ζi)

h+1. (23)

If ζi ∈ (0, 1), limh→∞ εhi = −θi, where the rate of convergence equals

lim
h→∞

εh+1
j + θj

εhi + θi
= log(1− ζi).

Following Proposition 2, the trade elasticity increases over time if θi > σi − 1. In the long-run, it is
equal to the Fréchet parameter θi, where the rate of convergence, intuitively, depends on the frequency
at which buyers can establish a new sourcing relationship ζi.

It is worth noting that Equation (22) is consistent with reduced-form estimates of the trade elasticity
at varying time horizons as in Boehm, Levchenko and Pandalai-Nayar (2023). Later, we leverage this
equivalence to identify the key structural parameters in our model. The horizon-specific formulation
of the trade elasticity implied by our model also induces a horizon-specific welfare formula, which we
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provide next.

3.2 The Horizon-Specific Welfare Gains from Trade

When supply relationships are slow to adjust to shocks, trade disruptions can put the economy through a
sustained period of readjustment. The following proposition shows that our framework yields a simple
formula for welfare analysis, giving changes in real wages associated with an initial set of foreign
shocks over varying time horizons.

Proposition 3. Suppose the economy is in steady state at t = −1. Then, the change in real wages in

country d at time h = {0, 1, ...}, Ŵ h
d = Cd,h/Cd,−1, that follows a set of arbitrary shocks to trade cost

at time at t = 0, is given by

Ŵ h
d =

∏
i,j∈I

( λddj,h

λddj,−1

)
− 1

θj
(
Ξdj,h

) 1
σj−1

ηiādji

, (24)

where

Ξdj,h ≡ ζj

(
λddj,h

λk=0
ddj,h

)σj−1−θj
θj

+(1−ζj)
h+1

(
λddj,h

λddj,−1

)σj−1−θj
θj

+
h∑

ς=1

ζj(1−ζj)
k

(
λddj,h

λk=0
ddj,h−ς

)σj−1−θj
θj

, (25)

and ādji is the (j, i)-th element of the Leontief inverse (Id −Ad)
−1, with the elements of Ad given by

αdji. If ζi ∈ (0, 1), then limh→∞ Ŵ h
d = limh→∞

∏
i,j∈I

(
λddj,t+h/λddj,−1

)−ηiādji/θj .

Although our model features transition dynamics on the supply side, Equation (24) shows that welfare
analysis can still be conducted using only a few sufficient statistics. These statistics delineate how the
impact of trade shocks on real wages varies over time due to staggered sourcing decisions, decomposing
the change in real wages associated with foreign shocks into two effects.

The first effect is captured by the terms (λddj,t+h/λddj,−1)
−1/θj on the right-hand-side of Equation (24).

Because the Fréchet parameter θj gives the price elasticity of trade flows sourced from the currently
cheapest global supplier and the share of domestic expenditures the response of trade to prices, each of
these terms would give the change in a particular industry j’s domestic price index if all goods were
optimally sourced. Because all supply relationships are flexible in the long-run, i.e., when h → ∞,
changes in aggregate home expenditure shares and the long-run trade elasticity, thus, remain sufficient
for long-run welfare analysis in our model, as in Eaton and Kortum (2002). However, staggered sourc-
ing decisions spell additional welfare effects in the short-run, i.e., when not all goods can be sourced
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optimally.

Staggered adjustment of suppliers spells time-varying distortions in prices and terms-of-trade, captured
by the terms (Ξdj,h)

1/(σj−1) in Equation (24). Intuitively, these distortions manifest via expenditure allo-
cations, and will vary across goods depending on when their current supplier was chosen. If a good was
last optimally sourced k periods ago, the resulting distortion in its price at horizon h can be informed
by the difference between the share of domestic expenditures on all goods time h and on optimally
sourced goods at time h− k, (λddj,h/λ

k=0
ddj,h−k)

(σj−1−θj)/θj . Intuitively, a decrease in λddj,h/λ
k=0
ddj,h−k indi-

cates that suppliers that were chosen k periods ago are now, at horizon h, less competitive; the implied
deterioration in a country’s aggregate terms-of-trade is decreasing in the elasticity of substitution, σj ,
and increasing in the share of goods sourced from these suppliers, ζj · (1− ζj)

k, is higher.

As an implication of Proposition 3, the trade elasticity relevant for welfare analysis varies over time. To
further illustrate this point, it is useful to approximate changes in industry-level prices up to a first-order,
which yields

log(
λddj,h

λddj,−1

)
− 1

θj (Ξdj,h)
1

σj−1 ≈ − 1

θj
[1− (1− ζj)

h+1] log
λk=0
ddj,h

λddj,−1

− 1

σj − 1
(1− ζj)

h+1 log
λk=h+1
ddj,h

λddj,−1

− Eh
dj,

where Eh
dj =

∑h+1
ς=1 (1− ζ)ςζ

[
1

σj−1
log

λk=ς
ddj,h

λk=0
ddj,h−ςj+1

− 1
θj
log

λk=0
ddj,h+1−ς

λ0
ddj,−1

]
.

The first term on the right captures how changes in the prices of goods that were procured optimally at
least once contribute to the overall change in prices at horizon h, assuming that past changes in factor
prices were equal to those observed h periods after the shock. The second term, in contrast, captures
changes in aggregate prices due to changes in the prices of goods whose suppliers have never been
adjusted. The relative importance of these two effects varies over time, in tandem with the structural
trade elasticity.

The last term, Eh
dj , captures how suboptimal sourcing decisions from the past continue to distort prices

at horizon h by distorting the equilibrium adjustment of factor prices relative to the long-run. Such
distortions are reflected in price differences between goods whose suppliers were adjusted before and
those that are procured optimally at horizon h.

Staggered sourcing decisions, hence, imply that the trade elasticity relevant for welfare analysis differs
from the structural elasticity in Equation (23) due the dynamic interaction of sourcing decisions and
factor prices. Due to these interactions, the welfare effects of trade shocks may, then, vary both quan-
titatively and qualitatively over time, even conditional on the structural parameters underlying the time
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variation in the trade elasticity. Viewed through this lens, Proposition 3 is fortunate in that it allows us
to summarize these dynamic effects in terms of a few statistics, which, as we will now describe, also en-
ables us deploy familiar tools from the international trade literature to solve exactly for the equilibrium
response of prices and wages to trade shocks implied by the model.

3.3 Characterization of Impulse Responses

We now show that solving for the responses of trade and production to shocks does not require knowl-
edge of the economy’s structural fundamentals (productivities, and trade costs). As an implication, the
so-called “hat algebra” of Dekle, Eaton and Kortum (2007) can be deployed to characterize impulse
responses in our model.

Trade flows at time t can be expressed in terms of succinct changes in trade costs and wages, as well as
past changes in trade flows for optimally sourced goods, trade costs and wages:

λsdi,t =

[
1 +

(
τ̂sdi,tŵs,t/ŵd,t

)1−σi+θi ωsdi,t−1

]
λk=0
sdi,t−1

(
τ̂sdi,tŵs,t

)−θi∑
s′∈N

[
1 +

(
τ̂s′id,tŵs′,t/ŵd,t

)1−σi+θi ωs′id,t−1

]
λk=0
s′id,t−1

(
τ̂s′id,tŵs′,t

)−θi
, (26)

where the wedges

ωsdi,t−1 ≡
µi,t(1)

µi,t(0)
+

∞∑
k′=2

µi,t(k
′)

µi,t(0)

(
λk=0
ddi,t−1

λk=0
ddi,t−k′

)σi−1

θi λk=k′

sdi,t−1

λk=0
sdi,t−1

t−1∏
ς=t−k′′+1

(
τ̂sid,ς

ŵs,t

ŵd,ς

)1−σi

, (27)

summarize how prior distortions in factor prices continue to impact trade flows at time t by distorting
the terms of trade.

Now suppose that the economy was in steady state at some time prior to t. Then, given bilateral country-
sector trade flows, industry-level consumption and intermediate good expenditure shares as well as
per-capita GDP, the only additional industry-level parameters that are required to recursively compute
changes in trade flows at increasing time horizons are given by {ζi, θi, σi} . Given this recursive formu-
lation for trade flows, we can express the market clearing conditions (21) in terms of changes in trade
costs and factor prices, as in Dekle, Eaton and Kortum (2007), and, hence, solve for the period-by-
period change in wages associated with (a sequence of) trade shocks.
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4 Estimation

We now turn to exploring the quantitative implications of our theory for the response of production
and welfare to trade shocks. In this section, we outline and implement our approach to estimating the
structural parameters that govern the time variation of the trade elasticity. In the next section, we will
use these estimates to provide a quantitative assessment ramifications of the 2018 US-China trade war
for trade, production and welfare.

4.1 Approach

Proposition 2 implies that we can express the trade elasticity at varying time horizons h as a function
of the set of structural parameters Θi ≡ {θi, σi, ζi}:

fh
i (Θi) ≡ εhi =

∂ log λsdi,t

∂ log τsid,0
= −θi

[
1− (1− ζi)

h+1
]
+ (1− σi)(1− ζi)

h+1.

Our approach to recovering these structural involves, as a first step, obtaining reduced-form estimates
of the trade elasticity over varying horizons. Such estimates can be obtained from the following speci-
fication using local projection methods:

log

(
Xsdi,t+h

Xsdi,t−1

)
= βh

i log

(
τ̄sdi,t
τ̄sdi,t−1

)
+ δsi,t+h + δdi,t+h + usdi,t+h,

where Xsdi,t denotes the exports of industry i goods from s to d at time t,and tsdi,t is the associated gross
ad valorem tariff. The remaining terms denote source- or destination-industry-year-specific country
fixed effects, and usdi,t is an idiosyncratic error term. The coefficient βh

X captures the change in trade
flows h periods ahead that follows an initial one-period change in tariffs. Suppose that tariff changes
were always one-time permanent shocks. Then a consistent estimate of βh

i would yield an estimate of
the structural trade elasticity at horizon h, εhi . We now show how to recover the structural parameters
governing the trade elasticity in our model, given a set of reduced-form estimates its behavior at varying
time horizons h. With a slight abuse of notation, let {β̂h

i }Hh=0 denote a set of such estimates ranging up
to horizon H > 0.

Intuitively, the parameter σi governs the behavior of the trade elasticity in the short-run, while θi pins
down its long-run value. The rate at which the trade elasticity converges to its long-run value, in turn,
depends on how fast buyers form new supply relationships, ζi. More formally, we can use the structural
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Table 1: Trade Elasticity Parameter Estimates for the Manufacturing Industry

Parameter Estimate

Supplier adjustment probability ζ 0.09
Long-run Trade Elasticity θ 3.16
Short-run Trade Elasticity σ − 1 0.11

expression for the trade elasticity to show that ζi, at any time h > 0, satisfies

log(1− ζi) =
1

h
log

(
fH
i (Θ)− θi
f 0
i (Θ)− θi

)
, (28)

which captures the rate at which the process governing the trade elasticity converges to its long-run
limit. Given a set of reduced-form estimates β̂i ≡ {β̂h

i }Hh=0, we recover our structural parameters by
minimum distance:

Θ̂i(β̂i) = argmin
Θ

(fh
i (Θ)− β̂h

i )i∈I)
TW

(
fh
i (Θ)− β̂h

i

)
i∈I

, (29)

where W is a H-dimensional weighting matrix. Provided that the estimates of the trade elasticity are
consistent, the continuous mapping theorem implies that Θ̂i(β̂i) will provide a consistent estimate of
Θ.

4.2 Implementation and Results

To implement our estimation approach, we leverage a set of comprehensive reduced-form estimates
of the trade elasticity at different time horizons by Boehm, Levchenko and Pandalai-Nayar (2023).
Following the reduced-form empirical approach outlined above, they find that arguably exogenous tariff
changes in third countries predict a short-run trade elasticity that is substantially lower over shorter
compared to longer horizons h, where h = 0, 1, ..., 10. To recover our set of structural parameters, we
focus on matching the implied empirical behavior of the trade elasticity within the first two years, as
well as at horizons h = {8, 9, 10}. Specifically, we set the weighting matrix W so that our estimator
targets the response of trade flows to an initial change in tariffs Table 1 presents the results.

We find that supply relationships reset at an annual rate of about 9 percent, indicating substantial sticki-
ness in supply relationships. The long-run trade elasticity across manufacturing industries, on average,
equals 3.2, consistent with estimates in the literature on gravity. Our estimate of the elasticity of substi-
tution equals 1.145, suggesting that trade elasticity, in the short-run, will be substantially lower, given
the stickiness of supply relationships.
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Figure 1: The trade elasticity at varying time horizons

Notes: The red line depicts the structural trade elasticity in Equation (23) under the parameter estimates displayed in Table 1. The blue line plots the
corresponding reduced-form estimates by Boehm, Flaaen and Pandalai-Nayar (2023).

Figure 1 graphs the structural trade elasticity implied by these parameter estimates, along with the
reduced-form elasticity estimates by Boehm, Levchenko and Pandalai-Nayar (2023). On impact (h =

0), the structural trade elasticity is close to zero. Over time, it smoothly increases in absolute value,
reflecting the gradual resetting of supply relationship and reaching a level of −2.2 after 10 years.
Reassuringly, the structural trade elasticity matches the behavior of its empirical counterpart also at
horizons that were not explicitly targeted by our estimator.

To explore heterogeneity of trade elasticities across different industries, we implement our approach
to separately estimate parameters for 10 distinct H.S. product categories, utilizing the corresponding
reduced-form estimates found in Boehm, Flaaen and Pandalai-Nayar (2023). Our results, as shown
in Table 2, reveal significant variation in these parameters across industries. Across industries, the
parameter estimates for the rate of supplier adjustment ζi range from as low as 2 percent to 36 percent,
while those for the Fréchet parameter θi indicate values of long-run trade elasticities range from 1.8
and 7.2. The parameter estimates for σi, in comparison, vary little across sectors. This variation
in parameter estimates has implications for the magnitudes of short- and long-run trade elasticities,
governed by σi and θi, and the rate at which trade elasticities converge to their long-run value, governed
by ζi, as well as for welfare analysis, following Proposition 3.

5 Quantitative Application: The US-China Trade War

Armed with our structural estimates, we now apply our model to study the general equilibrium response
of trade and production to the US-China trade war.
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Table 2: Trade Elasticity Parameter Estimates across H.S. product categories

Industry Adjustment rate ζi LR trade elasticity θi SR trade elasticity σi

Plastics 0.08 1.8 1.44
Leather 0.09 7.2 0.9
Wood 0.15 3.9 1.5
Paper 0.18 3.3 0.4
Textile 0.29 3.5 0.5
Stone 0.12 5.9 0.4
Base Metals 0.08 3.6 1.2
Machinery 0.09 1.8 1.3
Optical Instruments 0.02 3.4 1.3
Others 0.36 3.8 1.6

5.1 Steady-State Calibration

We compare the country-level aggregate outcomes after the rise in tariffs between the United States and
China in 2018 with the outcomes in the absence of the U.S.-China trade war. To do so, we calibrate the
initial steady state to the observed trade flows in 2017.4 With the structural estimates from the previous
section at hand, we, additionally, require information on aggregate trade flows, domestic production
and expenditures, by country and industry, to calibrate our model to the initial steady state.

Trade and Production Data Our calibration for the initial steady state is based on information on
trade flows that involve 44 countries (including a location for the “rest of the world”) and 170 industries
based on the 2016 release of the World Input-Output Database (Timmer et al., 2015) and the Interna-
tional Trade and Production Database for Estimation 2020 (Borchert et al., 2020). For consistency, we
aggregate industries to match the eleven HS categories for which we obtained estimates of the struc-
tural trade parameters. We further collapse industries whose goods are not subject to tariffs into an
aggregate services sector. In our baseline calibration, we assume that the services sector is not subject
to adjustment frictions, rendering the elasticity of substitution in this industry irrelevant for counterfac-
tual analysis. In keeping with the best practice in the literature, we assign its long-run trade elasticity a
value equal to 4.

Tariffs We measure the tariff implications of the trade war by constructing import-weighted averages
of the tariff changes documented by Fajgelbaum et al. (2020). The resulting set of one-period shocks
raises trade costs between the US and China between 2 and 13 percent across industries.

4We could, alternatively, choose another year as our initial steady state, and then solve for the exact changes in trade
costs and technologies that rationalize the trade flows in the year before the tariff escalations took place.

21



Figure 2: US-China Trade War Counterfactual: Equilibrium trade elasticity of bilateral US-CHN trade
flows

Notes: This figure displays the counterfactual elasticity of bilateral trade flows between the US and China at horizon h that follows tariff increases in
2018.

5.2 Quantitative Results

We simulate the dynamic general equilibrium responses of trade, production and welfare in all 44
countries to the initial changes in trade costs between the US and China in 2018. Before describing the
normative implications of the trade war for US welfare, we first show how trade flows and prices adjust
in response to the shock.

Trade flows As expected, bilateral trade between China and the US falls in response to the rise in
tariffs. As shown in Figure 2, the implied total trade elasticity, averaged across non-services industries,
increases in absolute value over time until it settles at a long-run value of about 2. In the short-run, the
responsiveness of trade flows to price shocks is well approximated by the partial trade elasticity in (23),
highlighting how factor prices, initially, respond too little to trade disruptions due to the sluggishness
of short-run demand. As this demand gradually adjusts over time, bilateral exports continue to fall;
however, trade flows fall by less than predicted by the structural trade elasticity due to simultaneous
adjustments in world factor prices.

Prices. The sluggish short-run response of US demand to the rise in trade costs induces a substantial
rise in its domestic price level. As shown in Figure 3, aggregate output prices rise across all industries
in the U.S, where some industries see prices rise by over 4% upon impact. As sourcing decisions
gradually adjust to the initial rise in trade cost, over half of this initial hike in prices will be undone 15
periods after the shock.
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Figure 3: Trade War Counterfactual: Changes in domestic output prices by industry

(a) US (b) China

Notes: This figure displays the counterfactual changes in aggregate price indices for each industry in the US and China at horizons h = 0 and h = 15.

In contrast to domestic prices in the US, the responses of domestic prices in China vary by industry
and differ over time both quantitatively and qualitatively. As in the US, the increase in tariffs results in
higher output prices for Chinese consumers in the long-run. In the short-run, however, some industries
in China see a decline in domestic output prices, for example, plastics, leather, and services. Intuitively,
a rise in trade barriers can temporarily improve a country’s terms-of-trade when trade is not primarily
driven by comparative advantage.

Real Wages and Welfare. Figure 5 traces the horizon-specific responses of the real wage in the US
to the trade war. The red line displays the responses of the US’s real wage over the h = 0, 1, ... periods
that follow the initial onset of the trade war in 2018, h = 0, relative to steady state. To account for
the importance of sourcing frictions for these welfare changes, we also graph, in blue, the hypothetical
change in welfare if new suppliers could be found instantly, given realized changes in factor prices
(following Proposition 2).

In the US, the onset of the trade war leads to a decline of its real wage equal to -0.35%, reflecting
the previously discussed spike in domestic output prices. Frictions in sourcing decisions account for
more than 75% of this initial decline in real wages. In particular, our decomposition shows that real
wages would have only decreased by about 0.1% if all supply relationships could have flexibly adjusted,
holding fixed the changes in factor prices.

The transitory dynamics of real wages in the periods following the arrival of the shock reflect the
interaction of two opposing forces. On the one hand, as a growing number of supply relationships get
to be reset, the magnitude of price distortions decreases over time; on the other hand, they compound
for the subset of goods that continue to be sourced from previous suppliers. Figure 2 shows that the
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Figure 4: US-China Trade War Counterfactual: Response of Real Wages in the US

latter initially dominates the former effect, resulting the real wage in the US to decline further in 2019
(horizon h = 1), falling -0.4 percent below its initial value. Price distortions only start to decline from
horizon h = 2 onward, resulting in a gradual rise of the real wage. The real wage will then continue to
increase up until it converges with that implied by the long-run model.

To quantify the welfare loss associated with these transitional dynamics in real wages, we adopt con-
sumption equivalence as a welfare measure, assuming that consumers have logarithmic inter-temporal
preferences, u(C) = logC and a discount future utility flows at a rate β = 0.95. Given these assump-
tions, we then separately calculate the consumption equivalent welfare change corresponding to a given
counterfactual path of real wages at each time horizon h = 0, 1, 2, ....

Figure 6 displays the results, showing the cumulative welfare effects of the trade war on the US and
China. The response of US welfare shows that the dynamic costs of trade disruptions are about 70%
higher than those implied by steady-state comparisons: While the long-run effects of the trade war
induce a consumption-equivalent welfare loss of 0.1%, the transitional supply disruptions that play out
over the short-run amount to a welfare loss of 0.17%.

The right panel in figure 2 shows that the welfare costs of the trade war born by China are an order of
magnitude smaller than those in the US. The overall consumption-equivalent welfare losses in China
is equal to -0.033%, compared to a steady state welfare loss of -0.028%. As a key point of departure,
we find that price distortions primarily affect welfare through current supplier choices, rather than
through the prices of old contracts. That is, transitory welfare losses, in China, primarily result from
the interaction of short-run distortions in world factor prices and current sourcing decisions.
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Figure 5: Trade War Counterfactual: Consumption Equivalent Welfare Changes

(a) US (b) China

Notes: Cumulative response of consumption equivalent welfare to an initial rise in tariffs in period h = 0, assuming logarithmic intertemporal utility and
a discount factor of β = 0.95. Total welfare effect is displayed in red. The blue line shows the change in welfare due to adjustments domestic trade shares
for optimally sourced goods, following Proposition 2.

We conclude by briefly discussing the welfare implications for countries not directly impacted by the
trade war, which we summarize in table 4. We find that the short-run effects of trade disruptions
negatively impact welfare across all countries, where losses are intuitively concentrated in major trading
partners of either the US or China, such as Mexico, Canada, or Japan. However, while short-run
welfare losses among third-party countries are largest in Mexico in the initial periods following the
trade disruption, Mexico also stands out as one of the few countries that gains from the trade war in
the long-run. Intuitively, in the short-run, price disruptions propagate through the international trade
network and negatively impact all countries. In the long-run, however, the readjustment of supply
relationships that follows a trade disruption can be beneficial for some countries. Mexico, in particular,
benefits by increasing its exports to the US, while becoming a major export destination for Chinese
goods.

6 Concluding Remarks

To account for imperfect adjustment to global supply-chain shocks, we develop a Ricardian trade frame-
work with frictions that result in infrequent decisions of producers to change global suppliers. We
obtain novel formulas for welfare changes to trade openness and trade shocks, derive novel estimation
equations for trade elasticity estimation at varying time horizons, and quantify the model. Simulations
of the so-called China-US trade war episode suggest that rich sectoral dynamics ensue, resulting in
considerable short-term reallocations and substantive welfare fluctuations.
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Appendix

A Additional Tables
Table 3: Quantification of the model

Industry Parameters
ζi θi σi τ̂US,CHN τ̂CHN,US

Plastics 0.08 1.8 1.44 1.11 1.11
Leather 0.09 7.2 0.9 1.10 1.10
Wood 0.15 3.9 1.5 1.14 1.14
Paper 0.18 3.3 0.4 1.10 1.10
Textile 0.29 3.5 0.5 1.10 1.10
Stone 0.115 5.9 0.4 1.18 1.18
Base Metals 0.08 3.6 1.2 1.17 1.10
Machinery 0.09 1.8 1.3 1.10 1.09
Optical Instruments 0.02 3.4 1.3 1.09 1.18
Misc Manufacturing 0.36 3.8 1.6 1.06 1.05
HS Aggregate 0.09 3.16 1.14 1.06
Services 1 4 - 1.03 1.02
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Table 4: The U.S.-China Trade War: Counterfactual Welfare Changes in Selected Countries

Country Cumulative Welfare Change (%)
h = 0 h = 10 h → ∞

United States -0.35 -0.23 -0.18
China -0.03 -0.03 -0.04
Canada -0.03 -0.02 -0.003
Mexico -0.07 -0.02 0.01
Japan -0.02 -0.004 0.004
Korea -0.01 -0.002 0.000
Taiwan -0.006 -0.0015 0.000
India -0.009 -0.005 -0.000
UK -0.014 -0.0065 -0.01
Germany -0.012 -0.005 -0.001
France -0.012 -0.006 0.001

Notes: Cumulative welfare changes of country i at horizon h: present discounted change in real wages over the h periods
that follow upon an initial rise in trade costs between the US and China

B Equilibrium

B.1 Ideal Price Indexes and Generic Trade Shares

The composite good in industry j is

Ydj,t ≡

(∫
[0,1]

ydj,t(ω̄)
σj−1

σj dω̄

) σj
σj−1

.

Product space Ωj = [0, 1] can be partitioned into disjoint sets with Ωj =
⋃∞

k=0 Ω
k
j,t, so we can rewrite

the composite good as

Ydj,t ≡

 ∞∑
k=0

∫
Ωk

j,t

ydj,t(ω̄)
σj−1

σj dω̄


σj

σj−1

. (B.1)
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The assembler’s associated cost minimization problem is

min
{ydj,t(ω̄)}ω̄∈Ωj,t

,{Y k
dj,t}

Pdj,tYdj,t =
∞∑
k=0

P k
dj,tY

k
dj,t

s.t. Ydj,t =

 ∞∑
k=0

(
Y k
dj,t

)σj−1

σj


σj

σj−1

, Y k
dj,t ≡

(∫
Ωk

j,t

ydj,t(ω̄)
σj−1

σj dω̄

) σj
σj−1

,

P k
dj,tY

k
dj,t =

∫
Ωk

j,t

pdj,t(ω̄)ydj,t(ω̄)dω̄,

where we define the partial composite good Y k
dj,t ≡

(∫
Ωk

j,t
ydj,t(ω̄)

σj−1

σj dω̄
) σj

σj−1

for each partition k as

a helpful construct for derivations and implicity define the associated partial ideal price index P k
dj,t that

satisfies P k
dj,tY

k
dj,t =

∫
Ωk

j,t
pdj,t(ω̄)ydj,t(ω̄)dω̄.

Under homotheticity of the assembler’s production, this problem can be solved in two steps. First, the
assembler decides which share of cost it allocates to each partial composite good Y k

dj,t. Given those
choices, the assembler then decides the optimal cost for each intermediate good ydj,t(ω̄). Optimal
demand satisfies

Y k
dj,t =

(
P k
dj,t

Pdj,t

)−σj

Ydj,t and (B.2)

ykdj,t(ω̄) =

(
pdj,t(ω̄)

P k
dj,t

)−σj

Y k
dj,t =

(
pdj,t(ω̄)

Pdj,t

)−σj

Ydj,t for each ω̄ ∈ Ωk
j,t, (B.3)

where the last equality also shows that the partitioned solution equals the standard solution under a
constant elasticity of substitution. Replacing the demand functions above in the definition of the budget
constraint results in the expressions for the ideal price indices:

Pdj,t =

(∫
[0,1]

pdj,t(ω̄)
1−σjdω̄

) 1
1−σj

, P k
dj,t =

(∫
Ωk

j,t

pdj,t(ω̄)
1−σjdω̄

) 1
1−σj

. (B.4)

We have now established that partitioning the product space into disjoint sets results in well-behaved
demand functions such that, given optimal choices within each set, we can analyze demand for each
intermediate good independently and then aggregate. In subsequent derivations, expenditure shares
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within each partition k will play a crucial role, so we state a general definition here:

λk
sdj,t ≡

Xk
sdj,t

Xk
dj,t

≡

∫
Ωk

j,t
1 {s is ω’s source country} pdj,t(ω)ydj,t(ω) dω∫

Ωk
j,t
pdj,t(ω)ydj,t(ω) dω

(B.5)

=

∫
Ωk

j,t
1 {s is ω’s source country} pdj,t(ω)ydj,t(ω) dω∑

n

∫
Ωk

j,t
1 {n is ω’s source country} pdj,t(ω)ydj,t(ω) dω

.

B.2 Trade Shares When Firms Are Sourcing Optimally (k = 0)

Under perfect competition, the destination price for intermediate good ω ∈ Ω0
j,t offered by country s

to country d is psdj,t(ω) = csdj,t/zsj(ω) for the common unit cost component csdj,t by (3) and supplier
ω’s productivity zsi(ω). Under the EK assumptions, the cumulative distribution function of prices is
therefore

F̃sdj,t(p) = P
[
psdj,t(ω) < p

]
= 1− Fsj

(
csdj,t
p

)
= 1− exp

{
−Asj(csdj,t)

−θjpθj
}
. (B.6)

The resulting probability that country d sources an intermediate good ω ∈ Ω0
j,t from country s is

P
[
s = argminn

{
pndj,t(ω)

}]
=

∫ ∞

0

∏
n̸=s

[
1− F̃ndj,t (p)

]
dF̃sdj,t(p) =

Asj(csdj,t)
−θj

Φdj,t

, (B.7)

where Φdj,t ≡
∑

n Asj(csdj,t)
−θj .

For products in Ω0
j,t, the distribution of prices G0

sdj,t(p) paid in country d on products sourced from
country s equals the overall distribution of prices paid in country d: G0

dj,t(p). For any given source
country s:

G0
sdj,t(p) = P

[
pdj,t(ω) ≤ p

∣∣∣s = argminn

{
pndj,t(ω)

}]
= 1− exp

{
−Φdj,tp

θj
}
.

The unconditional distribution is the same as the distribution conditional on each source country, so

G0
dj,t(p) =

∑
s

P
[
pdj,t(ω) ≤ p

∣∣∣s = argminn

{
pndj,t(ω)

}]
P
[
s = argminn

{
pndj,t(ω)

}]
=

∑
s

(
1− exp

{
−Φdj,tp

θj
})

λ0
sdj,t = 1− exp

{
−Φdj,tp

θj
}
, (B.8)

where the last equality follows from the fact that
∑

s λ
0
sdj,t = 1.
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Putting these results together, we can now solve for the expenditure share within partition 0. Starting
from the definition of expenditure shares,

λ0
sdj,t ≡

∫
Ω0

j,t
1
{
s = argminm

{
pmdj,t(ω)

}} (
psdj,t(ω)

)1−σj dω∑
n

∫
Ω0

j,t
1
{
n = argminm

{
pmdj,t(ω)

}} (
pndj,t(ω)

)1−σj dω

=

∫
Ω0

j,t
1
{
s = argminm

{
pmdj,t(ω)

}} ∫∞
0

(p)1−σj dGsdj,tdω∑
n

∫
Ω0

j,t
1
{
n = argminm

{
pmdj,t(ω)

}} ∫∞
0

(p)1−σj dGndj,tdω

=

∫
Ω0

j,t
1
{
s = argminm

{
pmdj,t(ω)

}}
dω
∫∞
0

(p)1−σj dGdj,t∑
n

∫
Ω0

j,t
1
{
n = argminm

{
pmdj,t(ω)

}}
dω
∫∞
0

(p)1−σj dGdj,t

=

∫
Ω0

j,t
1
{
s = argminm

{
pmdj,t(ω)

}}
dω∫

[0,1]
1
{
ω ∈ Ω0

j,t

}
dω

=
µj,t(0)P

[
s = argminm

{
pmdj,t(ω)

}]
µj,t(0)

=
Asj(csdj,t)

−θj

Φdj,t

, (B.9)

where µi,t(0) is the measure of the set Ω0
i,t. The third line uses the fact again that the distribution of

prices conditional on the source country is the same as the unconditional distribution of prices, and the
last equality uses the probability that a given source country hosts the lowest-cost supplier.

We can derive the corresponding ideal price indices using(
P 0
dj,t

)1−σj

=

∫
Ω0

j,t

pdj,t(ω̄)
1−σjdω̄ =

∫
Ω∗

j,t0

∫ ∞

0

(p)1−σj dGdj,t dω̄

=

∫
Ω0

j,t

∫ ∞

0

(p)1−σj θjΦdj,tp
θj−1 exp

{
−Φdj,tp

θj
}

dp dω̄.

For a change of variables, define x ≡ pθjΦdj,t, which implies that dx = θjΦdj,tp
θj−1dp and p =(

x/Φdj,t

)1/θj . Denoting γj ≡ Γ
(
[θj + 1− σj]/θj

)
, we can then rewrite the integral above as

(
P 0
dj,t

)1−σj

=

∫
Ω0

j,t

∫ ∞

0

(
x

Φdj,t

) 1−σj
θj

exp{−x} dx dω̄ = γj µj,t(0)
(
Φdj,t

)− 1−σj
θj , (B.10)

µj,t(0) denotes the measure of the set Ω0
j,t. The results show that, when firms are adjusting, trade shares
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operate as in the frictionless economy of EK.

Using standard hat algebra for changes in the common unit cost component ĉsdj,t ≡ csdj,t/csdj,t−1, we
can express trade shares and price levels within partition k = 0 as:

λ0
sdj,t =

λ0
sdj,t−1ĉ

−θj

sdj,t∑
n λ

0
ndj,t−1(ĉndj,t)

−θj
(B.11)

P 0
dj,t = P 0

dj,t−1

[∑
s

λ0
sdj,t−1(ĉsdj,t)

−θj

]− 1

θj

. (B.12)

We next derive an analogous result for partitions k > 0 when firms are not adjusting their extensive
margin of suppliers.

B.3 Trade Shares When Firms Are Not Adjusting (k > 0)

For intermediate goods ω ∈ Ωk
j,t, assemblers last adjusted the least-cost supplier t − k periods ago.

In order to account for changes in trade shares and price levels, we therefore need to recall optimal
sourcing choices at period t− k and trace changes in parameters and prices since t− k.

Suppose that in period t− k intermediate good ω was optimally sourced from country s to country d in
industry j. Then the destination price in period t for this intermediate good will be:

psdj,t(ω) =
csdj,t
zsj(ω)

=

∏t
ς=t−k+1 csdj,t−k ĉsdj,ς

zsj(ω)
= psdj,t−k(ω)

t∏
ς=t−k+1

(
ĉsdj,ς

)
, (B.13)

which is the initial destination price adjusted for the cumulative changes in trade costs and factor costs.
Using this result, we can derive country d’s expenditure share by source country across intermediate
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goods ω ∈ Ωk
j,t

λk
sdj,t ≡

∫
Ωk

j,t
1
{
s = argminm

{
pmdj,t−k(ω)

}}(
psdj,t−k(ω)

∏t
ς=t−k+1 ĉsdj,ς

)1−σj

dω∑
n

∫
Ωk

j,t
1
{
n = argminm

{
pmdj,t−k(ω)

}}(
pndj,t−k(ω)

∏t
ς=t−k+1 ĉndj,ς

)1−σj

dω

=

∫
Ωk

j,t
1
{
s = argminm

{
pmdj,t−k(ω)

}} ∫∞
0

(p)1−σj dGsdj,t−kdω
(∏t

ς=t−k+1 ĉsdj,ς

)1−σj

∑
n

∫
Ωk

j,t
1
{
n = argminm

{
pmdj,t−k(ω)

}} ∫∞
0

(p)1−σj dGndj,t−kdω
(∏t

ς=t−k+1 ĉndj,ς

)1−σj

=

∫
Ωk

j,t
1
{
s = argminm

{
pmdj,t−k(ω)

}}
dω
∫∞
0

(p)1−σj dGdj,t−k

(∏t
ς=t−k+1 ĉsdj,ς

)1−σj

∑
n

∫
Ωk

j,t
1
{
n = argminm

{
pmdj,t−k(ω)

}}
dω
∫∞
0

(p)1−σj dGdj,t−k

(∏t
ς=t−k+1 ĉndj,ς

)1−σj

=

∫
Ωk

j,t
1
{
s = argminm

{
pmdj,t−k(ω)

}}
dω
(∏t

ς=t−k+1 ĉsdj,ς

)1−σj

∑
n

∫
Ωk

j,t
1
{
n = argminm

{
pmdj,t−k(ω)

}}
dω
(∏t

ς=t−k+1 ĉndj,ς

)1−σj

=
µj,t(k)λsdj,t−k

(∏t
ς=t−k+1 ĉsdj,ς

)1−σj

∑
n µj,t(k)λndj,t−k

(∏t
ς=t−k+1 ĉndj,ς

)1−σj

=
λ0
sdj,t−k

(∏t
ς=t−k+1 ĉsdj,ς

)1−σj

∑
n λ

0
ndj,t−k

(∏t
ς=t−k+1 ĉndj,ς

)1−σj
, (B.14)

where µi,t(k) is the measure of the set Ωk
i,t. The third line again uses the fact that, at t−k, the distribution

of prices conditional on the source is the same as the unconditional distribution; and the last line uses
the result from the previous section that λ0

sdj,t−k = P
[
s = argmins

{
psdj,t−k(ω)

}]
.

34



We can derive the corresponding ideal price indices using(
P k
dj,t

)1−σj

=

∫
Ωk

j,t

pdj,t(ω̄)
1−σjdω̄

=
∑
s

∫
Ωk

j,t

1
{
s = argminm

{
pmdj,t−k(ω)

}}psdj,t−k(ω)
t∏

ς=t−k+1

ĉsdj,ς

1−σj

dω

=
∑
s

∫
Ωk

j,t

1
{
s = argminm

{
pmdj,t−k(ω)

}}∫ ∞

0

(p)1−σj dGsdj,t−kdω

 t∏
ς=t−k+1

ĉsdj,ς

1−σj

=

∫ ∞

0

(p)1−σj dGdj,t−k

∑
s

∫
Ωk

j,t

1
{
s = argminm

{
pmdj,t−k(ω)

}}
dω

 t∏
ς=t−k+1

ĉsdj,ς

1−σj

=
µj,t(k)

µj,t−k(0)

(
P 0
dj,t−k

)1−σj ∑
s

λ0
sdj,t−k

 t∏
ς=t−k+1

ĉsdj,ς

1−σj

(B.15)

The price level change in partition 0 satisfies P 0
dj,t = P 0

dj,t−1

[∑
s λ

0
sdj,t−1(ĉsdj,t)

−θj
]− 1

θj by (B.10), so
we can rewrite the ideal price for composite goods with the last supplier selection k periods ago

(
P k
dj,t

)1−σj

=
µj,t(k)

µj,t−k(0)

(
P 0
dj,t−k−1

)1−σj

[∑
n

λ0
ndj,t−k−1ĉ

−θj

ndj,t−k

]− 1−σj

θj ∑
s

λ0
sdj,t−k

 t∏
ς=t−k+1

ĉsdj,ς

1−σj

.

Denoting γj ≡ Γ
(
[θj + 1− σj]/θj

)
and using the fact that

(
P 0
dj,t

)1−σj

= µj,t(0)
(
Φdj,t

)− 1−σj
θj γj , we

can rewrite the expression above as:

(
P k
dj,t

)1−σj

= γjµj,t(k)
(
Φdj,t−k

)− 1−σj
θj

∑
s

[
λ0
sdj,t−k−1Asj ĉ

−θj

sdj,t−k

]− 1−σj

θj

 t∏
ς=t−k+1

ĉsdj,ς

1−σj

(B.16)

after expressing λ0
sdj,t−k recursively.

B.4 Aggregation Over Partitions

The aggregate ideal price level of the final good can be rewritten as a combination of the price levels
of the partial price indices for the composites of intermediate goods purchased at time t from suppliers
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chosen t− k periods ago:

(
Pdj,t

)1−σj =

∫
[0,1]

pdj,t(ω̄)
1−σjdω̄ =

∞∑
k=0

∫
Ωk

j,t

pdj,t(ω̄)
1−σjdω̄ =

∞∑
k=0

(
P k
dj,t

)1−σj

.

Using the price index expressions (B.10) and (B.16) from the preceding subsections yields

(
Pdj,t

)1−σj = γj

∞∑
k=0

µj,t(k)
(
Φdj,t−k

)− 1−σj
θj

∑
s

[
λ0
sdj,t−k−1Asj ĉ

−θj

sdj,t−k

]− 1−σj

θj

× exp

1{k > 0} log

 t∏
ς=t−k+1

ĉsdj,ς

1−σj


=

∞∑
k=0

µj,t(k)

µj,t−k(0)

(
P 0
dj,t−k−1

)1−σj ∑
n

[
λ0
ndj,t−k−1ĉ

−θj

ndj,t−k

]− 1−σj

θj

× exp

1{k > 0} log

∑
s

λ0
sdj,t−k

 t∏
ς=t−k+1

ĉsdj,ς

1−σj


 . (B.17)

Recall that, by optimal demand, expenditure shares of each partition relative to total expenditures are

P k
dj,tY

k
dj,t

Pdj,tYdj,t

=

(
P k
dj,t

Pdj,t

)1−σj

Total expenditure shares are therefore simply the weighted average of trade shares across partitions

λsdj,t ≡
∞∑
k=0

P k
dj,tY

k
dj,t

Pdj,tYdj,t

λk
sdj,t =

∞∑
k=0

(
P k
dj,t

Pdj,t

)1−σj

λk
sdj,t, (B.18)

which can also be stated as

λsdj,t =

(
P 0
dj,t

Pdj,t

)1−σj
λ0
sdj,t−1ĉ

−θj

sdj,t∑
n λ

0
ndj,t−1ĉ

−θj

ndj,t

+
∞∑
k=1

(
P k
dj,t

Pdj,t

)1−σj λ0
sdj,t−k

(∏t
ς=t−k+1 ĉsdj,ς

)1−σj

∑
n λ

0
ndj,t−k

(∏t
ς=t−k+1 ĉndj,ς

)1−σj
.
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Writing λ0
sdj,t−k and λ0

ndj,t−k recursively, we can express trade shares compactly as

λsdj,t =
∞∑
k=0

(
P k
dj,t

Pdj,t

)1−σj λ0
sdj,t−k−1ĉ

−θj

sdj,t−k exp

{
1{k > 0} log

(∏t
ς=t−k+1 ĉsdj,ς

)1−σj

}
∑

n λ
0
ndj,t−k−1ĉ

−θj

ndj,t−k exp

{
1{k > 0} log

(∏t
ς=t−k+1 ĉndj,ς

)1−σj

} . (B.19)

B.5 Convergence

Results in the preceding subsection imply that trade shares can be expressed a sum over infinitely many
partitions. We now establish regularity conditions for convergence.

Lemma 1 (Convergence). If cumulative changes in trade costs are finite-valued limk→∞ |
∏t

ς=t−k+1 ĉndj,ς | <
∞, then price levels P k

dj,t < ∞ and trade shares 0 < λdj,t < 1 are finite-valued.

Proof. Note that
(
Φdj,t−k

)(σj−1)/θj < ∞ and
∑

s

[
λ0
sdj,t−k−1Asj ĉ

−θj

sdj,t−k

](σj−1)/θj
< ∞ are both finite-

valued, because they are equilibrium objects of a static equilibrium of the model. Also note that, for
any k > m, if |

∏t
ς=t−k+1 ĉndj,ς | < ∞, then |

∏t
ς=t−m+1 ĉndj,ς | < ∞, since the product up to k includes

every term in the product up to m. Therefore, if limk→∞ |
∏t

ς=t−k+1 ĉndj,ς | < ∞, then, for every
k < ∞, the product will also be finite. It follows that P k

dj,t < ∞ is finite valued for every k. Given that
limk→∞ µj,t(k) = limk→∞(1− ζj)

kζj = 0. These findings also guarantee that Pdj,t < ∞.

B.6 Proofs

B.6.1 Proof of Proposition 1.

When the economy is in steady state, then for any t < changes must satisfy F̂t = F̂⊮ and ŵt = ŵ⊮ so
that ĉs,t = 1 for all s ∈ D. For the firms that are adjusting at t (k = 0), evaluating Equation (19) at
those values, λ0

sdj,t = λ0
sdj,t−1 = · · · = λ0

sdj,0 for all t. For the firms that are not adjusting at t (k > 0),
we have t − k > 0 in equilibrium as long as the partition exists and can evaluate Equation (19) using
the same logic as above: λk

sdj,t = λ0
sdj,t−k = λ0

sdj,0 for all t. From Equation (19), it is easy to see that
λsdj,t = λ0

sdj,t, which shows that λt = λEK in steady state.

To derive the stationary distribution of contract lengths, begin by noting that the case k = 0 is trivial,
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since µ(0) = P [Kt = 0] = ζj does not vary. Now consider the case k > 0. Note that:

P [Kt = k, k > 0] =
∞∑
l=0

P [Kt = k, k > 0|Kt−1 = l]P [Kt−1 = l]

= (1− ζj)P [Kt−1 = k − 1]

The remaining proof for k > 0 then follows by induction. For Kt = 1, P [Kt = 1] = (1 − ζj)ζj , and
for Kt = 2, P [Kt = 2] = (1− ζj)P [Kt−1 = 1] = (1− ζj)

2ζj , and so forth recursively, for an arbitrary
Kt = k we must have P [Kt = k] = (1− ζj)

kζj . This is the probability density function of a geometric
distribution with mean (1− ζj)/ζj and standard deviation

√
1− ζj/ζj .

Finally, using the definition of the measure µ, µj,t(k) = P [Kt = k] for t ≥ k. Given the Markov
property of Kt, the following distribution will be stationary for all k ∈ N0:

B.6.2 Proof of Proposition 2.

For ease of notation, we suppress sector subscripts throughout the derivations. Consider a one-time
permanent change in trade costs such that τ̂sd,t ̸= 1 and τ̂sd,t+h = 1 ∀h > 0. To characterize the partial
trade elasticity at horizon h, we first characterize the elasticity for trade shares of each partition, then
aggregate them up using the consumption shares derived from the CES preferences over partitions. The
change in expenditure shares on intermediate goods in the kth partition in period t+h, relative to period
t− 1 is given by

log
λk
sd,t+h

λk
sd,t−1

=



−(σ − 1) log τ̂sd,t + log
λ0
sd,t+h−k

λk
sd,t−1

(
(cs,t+h/P

k
d,t+h)

(cs,t+h−k/P
k
d,t+h−k)

)1−σ

, k ≥ h

log
λ0
sd,t+h−k

λk
sd,t−1

(
(cs,t+h/P

k
d,t+h)

(cs,t+h−k/P
k
d,t+h−k)

)1−σ

, 1 ≤ k < h

log
λ0
sd,t+h−1

λk
sd,t−1

(
(cs,t+h/P

0
d,t+h)

(cs,t−1/P 0
d,t−1)

)θ

, k = 0

The first line denotes intermediate goods that have not updated suppliers since the shock arrived. For
such intermediate goods, changes in expenditure shares still explicitly depend on the shock to trade
costs. The remaining intermediate goods have updated at least once, and a “new” optimal sourcing
share λ0

sd,t+h−k from a time period between t and t + h encodes the “initial price index” relative to
which changes in expenditure shares are updated as well as the effect of the shock in trade costs. Unit
costs are the relevant GE variables.
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Denote

∆GEK
sd,t,t+h = −θ log

h∏
k=1

ĉsd,t+k

P̂ 0
sd,t+k

and

∆Gk
sd,ς,t+h = (1− σ) log

t+h∏
ς′=ς+1

ĉsd,ς′

P̂ k
sd,ς′

Then we can solve backwards to express all changes in trade shares above in terms of λ0
sd,t−1, if possible:

log
λk
sd,t+h

λk
sd,t−1

=


−(σ − 1) log τ̂sd,t + log

λ0
sd,t+h−k

λk
sd,t−1

+∆Gk
sd,t,t+h , k ≥ h

−θ log τ̂sd,t + log
λ0
sd,t−1

λk
sd,t−1

+∆GEK
sd,t,t+h−k +∆Gk

sd,t+h−k,t+h , 1 ≤ k < h

−θ log τ̂sd,t +∆GEK
sd,t,t+h , k = 0

Use the fact that outcomes determined at t and earlier do not respond to the change in trade costs.
Hence, the elasticity of λk

sd,t+h with respect to a change in trade costs at t, is hence given by,

d log(λk
sd,t+h/λ

k
sd,t)

d log τsd,t
=


−(σ − 1) +

d∆Gk
sd,t,t+h

d log τsd,t
, k ≥ h

−θ +
d∆GEK

sd,t,t+h−k

d log τsd,t
+

d∆Gk
sd,t+h−k,t+h

d log τsd,t
, 1 ≤ k < h

−θ +
d∆GEK

sd,t,t+h

d log τsd,t
, k = 0

To a first order, the change in overall expenditures at time t+ h caused by a one-time permanent shock
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to trade costs at t is given by

d log(λsd,t+h/λsd,t)

d log τsd,t
=

∞∑
k=0

ωk

d log λk
sd,t+h/λ

k
sd,t

d log τsd,t
+ (1− σ)

d log
Pk
sd,t+hPsd,t

(Pk
sd,tPsd,t+h)

d log τsd,t


=

h−1∑
k=0

ωk

−θ +
d∆GEK

sd,t,t+h

d log τsd,t
+

d∆Gk
sd,t+h−k,t+h

d log τsd,t
+ (1− σ)

d log
Pk
sd,t+hPsd,t

(Pk
sd,tPsd,t+h)

d log τsd,t


+

∞∑
k=h

ωk

(1− σ) +
d∆Gk

sd,t,t+h

d log τsd,t
+ (1− σ)

d log
Pk
sd,t+hPsd,t

(Pk
sd,tPsd,t+h)

d log τsd,t


=− θ

h−1∑
k=0

ωk + (1− σ)
∞∑
k=h

ωk

+
h−1∑
k=0

ωk

d∆GEK
sd,t,t+h

d log τsd,t
+

h−1∑
k=0

ωk(1− σ)

{∑t+h
ς=t+h−k+1 d log csd,ς

d log τsd,t
+

∑t+h−k
ς=t d logP k

sd,ς

d log τsd,t

}

+
∞∑
k=h

ωk(1− σ)

{∑t+h
i=0 d log csd,t+i

d log τsd,t

}

− (1− σ)

∑h
i=0 d logPsd,t+i

d log τsd,t

where ωk ≡

(
Pk
dj,t

Pdj,t

)1−σ

λk
sdj,t

∑
k

(
Pk
dj,t

Pdj,t

)1−σ

λk
sdj,t

=
µt(k)λk

sdj,t∑
k µt(k)λk

sdj,t
. If t was a steady state, then ωk = µ(k), and the partial

horizon-h trade elasticity equals:

εt+h
sd ≡ ∂ log λsdj,t+h

∂ log τsd,t
= −θ

h−1∑
k=0

µ(k) + (1− σ)
∞∑
k=h

µ(k).

Using the stationary distribution of µt(k) to substitute for µ(k), we obtain the expression stated in the
main text.
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B.7 Proof of Proposition 3.

We begin by rearranging Equation (19) to express the prices of composite goods in terms of home
expenditure shares:

λddi,tP
1−σi
d,t = µi(0)γi

(
Φ0

ddi,t

)−(
1−σi
θi

) c
−θi
dd,i

Φddi,t
+
∑

k≥1 γiµi(k)
(
Φ0

ddi,t−k

)− 1−σi
θi λ0

ddi,t−k

(
cddi,t

cddi,t−k

)1−σi

= µi(0)γi

(
c
−θi
dd

λk=0
ddit

)−(
1−σi
θi

)

λk=0
ddi,t−k +

∑
k≥1 γiµi(k)

(
c
−θi
dd,t−k

λddi,t−k

)− 1−σi
θi

λ0
ddi,t−k

(
cdd,t

cdd,t−k

)1−σi

P 1−σi
di,t = c1−σi

dd,t

(
λk=0
ddi,t

) 1−σi
θi 1

λddi,t
γi

µi(0)λ
k=0
ddi,t−k +

∑
k≥1 µi(k)

(
λk=0
ddi,t

λk=0
ddi,t−k

)− 1−σi
θi

λ0
ddi,t−k


where the second line follows from using the trade shares across varieties with different adjustment
status k to substitute for the terms Φk

ddi,t. Substituting for the common component of unit cost, we then
obtain:

Pdi,t

wd,t

=
(
λ0
ddi,t

) 1
θi
(
λddi,t

)1/(σj−1) (
ξdi,t
)1/(1−σi)

∏
j

(
Pdk,t

ws,t

)αsji

,

where

ξdi,t ≡ µi(0)λ
0
ddi,t +

∑
k≥1

µi(k)

(
λ0
ddi,t−k

λ0
ddi,t

)σi−1

θi

λ0
ddi,t−k.

Taking logs,

log
Pdi,t

wd,t

= logBsi,t +
∑
j

αsji log
Psj,t

ws,t

where Bdi,t ≡ A
− 1

Θi
αdi

i γi

(
λ0
ddi,t

) 1
θi
(
λddi,t

)1/(σj−1) (
ξdj,t
)1/(1−σi) In matrix notation, this leads to

(I− As) log P̂ s,t = logBs,t,

where Ad =
{
αdji

}
and log P̂ d,t and logBd,t are I × 1 vectors. Inverting this system of equations, we

obtain

Pdi,t

wd,t

=
∏
j

B
ādji
dj,t ,

where ādji is the (j, i) entry of the Leontief matrix (I− Ad)
−1. This implies

Pdi,t = γ
1/(1−σi)
i wdi,t

∏
j,j

[
A

−
āsjiαsji

Θj

j

(
λk=0
ddj,t

) āsji
θj
(
λddi,t

)ādji/(σj−1) (
ξdj,t
) āsji

1−σj

]
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Hence, the consumer price index in country d is given by:

Pd,t =
∏
i

(
Pdi,t

)ηi = Θswd,t

∏
i,j

[
A

−αsji/θj
j

(
λk=0
ddj,t

) 1
θj
(
λddj,t

) 1
σj−1

(
ξdj,t
) 1

1−σj

]ηiāsji
,

where Θs is a collection of time-invariant parameters. Consequently, the real wage is given by:

Wd,t ≡
wd,t

Pd,t

= Θ−1
s

∏
i,j

[
A

αsji/θj
j

(
λk=0
ddj,t

)− 1
θj
(
λddj,t

)− 1
σj−1

(
ξdj,t
) 1

σj−1

]ηiāsji
,

while the change in real wages between t− 1 and t+ h equals:

Wd,t+h

Wd,t

=
∏
i,j

(λk=0
ddj,t+h

λk=0
ddj,t−1

)− 1
θj

(
λddj,t+h

λddj,t−1

)− 1
σj−1

(
ξdj,t+h

ξdj,t−1

) 1
σj−1


ηiāsji

,

If t − 1 is a steady state, then λk
ddj,t−1 = λddj,t−1 for all k ∈ {0, 1, 2, ...} and the above expression

simplifies to:

Wd,t+h

Wd,t
=
∏

i,j

[(
λk=0
ddj,t+h

λddj,t−1

)
− 1

θj

(
λddj,t+h

ξdj,t+h

)
− 1

σj−1

]ηiāsji
=
∏

i,j

[(
λddj,t+h

λddj,t−1

)
− 1

θj
(
Ξdj,t

) 1
σj−1

]ηiāsji
,

where:

Ξdj,t ≡ ζj

(
λddj,t+h

λ0
ddj,t+h

)σj−1−θj
θj

+
h∑

k=1

ζj(1−ζj)
k

(
λddj,t+h

λ0
ddj,t+h−k

)σj−1−θj
θj

+ζj(1−ζj)
h+1

(
λddi,t+h

λddj,t−1

)σj−1−θj
θj

.
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